
MERKEL OMEGAT OMS-S PR

Merkel Omegat OMS-S PR ist ein zweiteiliger Dichtsatz zur Abdichtung von Kolbenstangen, bestehend aus einem Profilring aus PTFE oder PE mit integrierter Druckentlastungsfunktion und Stützkufe sowie einem Elastomer-Profilring als Vorspannelement. Patentiertes Produktdesign (Patent-Nr.: DE 10117662 CI)

Anwendungen

- Primärdichtung in einem Dichtsystem
- Langer Hub (>400 mm)
- Hohe Hubgeschwindigkeit bei ausfahrender Kolbenstange (>0,5 m/s)
- Große Geschwindigkeitsunterschiede in Abhängigkeit zur Bewegungsrichtung (v_{aus} >8x v_{ein})
- Schneller Druckabfall im Hauptraum
- Große Durchmesser (>200 mm)

NUTZEN FÜR DEN KUNDEN

- Austauschbar zu Bauräumen der Baureihe Merkel Omegat OMS-S
- Erhöhung der Betriebssicherheit von Dichtsytemen bei anspruchsvollen Betriebsparametern (kein permanenter Druckaufbau im Zwischenraum)
- Verlängerung der Lebensdauer von Dichtsystemen durch stabiles Langzeitverhalten (verbesserte Verdrehstabilität durch die Stützkufe)
- Hoher Widerstand gegen Extrusion (großes Deformationsvolumen des PTFE-Profilrings

EIGENSCHAFTEN UND KENNGRÖSSEN

Einsatzbereich

Werkstoff	PTFE GM201/NBR PTFE C104/NBR	PTFE B602/NBR	PE E083/NBR	PTFE GM201/FKM PTFE C104/FKM	PTFE B602/FKM
Hydrauliköle HL, HLP	−30 +100 °C	−30 +100 °C	−30 +100 °C	−10 +200 °C	−10 +200 °C
HFA-Flüssigkeiten	+5 +60 °C	-	+5 +60 °C	+5 +60 °C	-
HFB-Flüssigkeiten	+5 +60 °C	-	+5 +60 °C	+5 +60 °C	_
HFC-Flüssigkeiten	−30 +60 °C	-	−30 +60 °C	−10 +60 °C	-
HFD-Flüssigkeiten	-	-	_	−10 +200 °C	−10 +200 °C
Wasser	+5 +100 °C	-	+5 +80 °C	-	-
HETG (Rapsöl)	−30 +80 °C	−30 +80 °C	−30 +80 °C	−10 +80 °C	−10 +80 °C
HEES (synth. Ester)	−30 +80 °C	−30 +80 °C	−30 +80 °C	−10 +100 °C	−10 +100 °C
HEPG (Glycol)	−30 +60 °C	−30 +60 °C	−30 +60 °C	−10 +80 °C	−10 +80 °C
Mineralfette	−30 +100 °C	−30 +100 °C	−30 +80 °C	−10 +200 °C	−10 +200 °C
Druck	40 MPa	40 MPa	40 MPa	40 MPa	40 MPa
Gleitgeschwindigkeit	5 m/s	5 m/s	5 m/s	5 m/s	5 m/s

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

Werkstoff

Profilring aus PTFE oder PE

Werkstoff	Bezeichnung	Farbe	
PTFE-Glasfaser- MoS2-Compound	PTFE GM201	hellgrau	
PTFE-Bronze-Compound	PTFE B602	braun	
PTFE-Kohlefaser- Compound	PTFE C104	dunkel grau	
Polyethylen PE-UHMW	PE E083	weiß	

Profilring aus Elastomer

Werkstoff	Bezeichnung		
Nitrilkautschuk	NBR		
Fluorkautschuk	NBR		

Oberflächengüte

Rautiefen	R_{a}	R _{max}
Gleitfläche	0,05 0,3 μm	≤2,5 μm
Nutgrund	≤1,6 µm	≤6,3 μm
Nutflanken	≤3,0 μm	≤15,0 µm

Materialanteil Mr, >50 % bis max. 90 % bei Schnitttiefe c = $R_z/2$ und Bezugslinie $C_{\rm ref}$ = 0 %

Das Langzeitverhalten eines Dichtelements sowie die Sicherheit gegen Frühausfälle werden wesentlich durch die Qualität der Gegenlauffläche beeinflusst.

Eine exakte Beschreibung und Bewertung der Oberfläche ist somit unumgänglich. Basierend auf aktuellen Erkenntnissen empfehlen wir, die obige Definition zur Oberflächengüte der Gleitfläche durch die in der folgenden Tabelle dargestellten Kenngrößen zu ergänzen. Mit diesen neuen Kenngrößen aus dem Werkstoffanteil wird die bisher nur allgemeine Beschreibung des Werkstoffanteils gerade auch im Hinblick auf die Abrasivität der Oberfläche wesentlich verbessert.

Weitere Informationen in unserem Technischen Handbuch.

EIGENSCHAFTEN UND KENNGRÖSSEN

Oberflächengüte Gleitflächen

Kennwert	Grenzlage		
R _a	>0,05 μm <0,30 μm		
R _{max}	<2,5 μm		
R_{pkx}	<0,5 μm		
R_{pk}	<0,5 μm		
R_k	>0,25 μm	<0,7 μm	
R_{vk}	>0,2 μm	<0,65 μm	
R _{vkx}	>0,2 μm	<2,0 μm	

Die in der Tabelle gelisteten Grenzwert gelten derzeit nicht für keramische oder teilkeramische Gegenlaufflächen. Weitere Informationen in unserem Technischen Handbuch.

Spaltmaß

Das Maß D_2 wird unter Berücksichtigung des maximal zul. Extrusionsspalts, der Toleranzen, des Führungsspiels und der Einfederung der Führung unter Last bestimmt. Der maximal zul. Extrusionsspalt bei einseitiger Lage der Kolbenstange wird wesentlich durch den maximalen Betriebsdruck und die temperaturabhängige Formstabilität des Dichtungswerkstoffs bestimmt. Weitere Informationen in unserem Technischen Handbuch.

Profilmaß [mm]		Max. zulässiges Spaltmaß [mm]			
L	Profil	16 MPa	26 MPa	32 MPa	40 MPa
12,5	12,5	0,75	0,65	0,55	0,5
15	15	0,75	0,65	0,55	0,5
17,5	17,5	0,75	0,65	0,55	0,5
20	20	0,8	0,7	0,6	0,55

Bei einer Betriebstemperatur oberhalb von 90 °C und gleichzeitig anstehendem Betriebsdruck oberhalb von 26 MPa empfehlen wir den Einsatz der Werkstoff-Compounds PTFE B602 und PTFE C104.

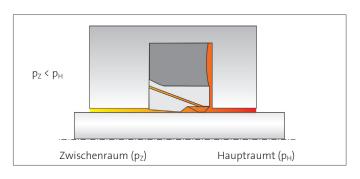
Toleranzen

Durchmesser D [mm]	Toleranzlage
<500	H8
≥500	H7

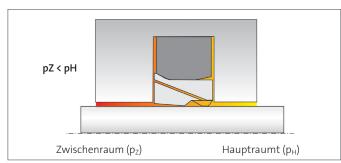
Die Toleranz zum Durchmesser d und D_2 wird im Zusammenhang mit der Spaltmaßberechnung festgelegt. In typischen Hydraulikanwendungen bis zu einem Nennmaß von 1.000 mm werden üblicherweise die Toleranzfelder f7 und f8 bzw. H7 und H8 gewählt.

Konstruktionshinweise

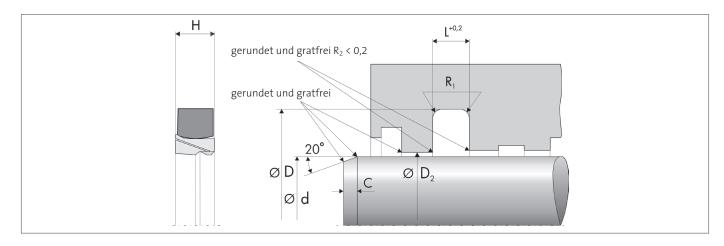
Bitte beachten Sie die allgemeinen Konstruktionshinweise in unserem Technischen Handbuch.



FUNKTIONSPRINZIP UND EINBAURAUM


Funktionsprinzip

Die Merkel Omegat OMS-S PR verfügt über eine integrierte Druckentlastungsfunktion. Sobald der Zwischenraumdruck p_Z größer wird als der Hauptraumdruck p_H , entlastet die Dichtung zuverlässig.


Position der Dichtung im Normalbetrieb

Position der Dichtung bei aktiver Druckentlastung

Einbauskizze

Die hierin enthaltenen Informationen werden als zuverlässig erachtet, es werden jedoch keinerlei Zusicherungen, Garantien oder Gewährleistungen jeglicher Art in Bezug auf ihre Richtigkeit oder Eignung für irgendeinen Zweck gegeben. Die hierin wiedergegebenen Informationen basieren auf Labortests und sind nicht unbedingt indikativ für die Leistung des Endprodukts. Vollständige Tests und die Leistung des Endprodukts liegen in der Verantwortung des Anwenders.

www.fst.com

