
MERKEL OMEGAT OMS-MR

Merkel Omegat OMS-MR ist ein zweiteiliger Dichtsatz zur Abdichtung von Kolbenstangen, bestehend aus einem PTFE-Profilring sowie einem O-Ring als Vorspannelement.

Anwendung

Stangendichtung, die besonders innerhalb eines Dichtsystems verwendet wird.

Werkstoff

PTFE Profilring

Werkstoff	Bezeichnung	Farbe
PTFE-Bronze-Compound	PTFE B602	braun
PTFE-Glasfaser-MoS2- Compound	PTFE GM201	hellgrau
PTFE-Kohlefaser-Compound	PTFE C104	dunkelgrau

O-Ring

Werkstoff	Bezeichnung
Nitrilkautschuk	NBR
Fluorkautschuk	FKM

Andere Werkstoffkombinationen sind auf Anfrage lieferbar.

NUTZEN FÜR DEN KUNDEN

- Sehr hohe Druckstandfestigkeit
- Gute Wärmeleitfähigkeit
- Sehr gute Extrusionsfestigkeit
- Hohe Abriebfestigkeit
- Geringe Reibung, stick-slip frei

EIGENSCHAFTEN UND KENNGRÖSSEN

Einsatzbereich

Werkstoff	PTFE B602/NBR	PTFE GM201/NBR PTFE C104/NBR	PTFE B602/FKM	PTFE GM201/FKM PTFE C104/FKM
Hydrauliköle HL, HLP	−30 +100 °C	−30 +100 °C	−10 +200 °C	−10 +200 °C
HFA-Flüssigkeiten	-	+5 +60 °C	-	+5 +60 °C
HFB-Flüssigkeiten	-	+5 +60 °C	-	+5 +60 °C
HFC-Flüssigkeiten	-	−30 +60 °C	-	−10 +60 °C
HFD-Flüssigkeiten	_	_	−10 +200 °C	−10 +200 °C
Wasser	-	+5 +100 °C	-	+5 +100 °C
HETG (Rapsöl)	−30 +80 °C	−30 +80 °C	−10 +80 °C	−10 +80 °C
HEES (synth. Ester)	−30 +80 °C	−30 +80 °C	−10 +100 °C	−10 +100 °C
HEPG (Glycol)	−30 +60 °C	−30 +60 °C	−10 +80 °C	−10 +80 °C
Mineralfette	−30 +100 °C	−30 +100 °C	−10 +200 °C	−10 +200 °C
Druck	40 MPa	40 MPa	40 MPa	40 MPa
Gleitgeschwindigkeit	5 m/s	5 m/s	5 m/s	5 m/s

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

Oberflächengüte

Rautiefen	R _a	$R_{\sf max}$
Gleitfläche	0,05 0,3 μm	≤2,5 μm
Nutgrund	≤1,6 µm	≤6,3 μm
Nutflanken	≤3,0 μm	≤15,0 μm

Materialanteil Mr >50% bis max. 90% bei Schnitttiefe c = Rz/2 und Bezugslinie Cref = 0%

Das Langzeitverhalten eines Dichtelementes sowie die Sicherheit gegen Frühausfällwerden wesentlich durch die Qualität der Gegenlauffläche beeinflusst.

Eine exakte Beschreibung und Bewertung der Oberfläche ist somit unumgänglich. Basierend auf aktuellen Erkenntnissen empfehlen wir, die obige Definition zur Oberflächengüte der Gleitfläche durch die in der folgenden Tabelle dargestellten Kenngrößen zu ergänzen. Mit diesen neuen Kenngrößen aus dem Materialanteil wird die bisher nur allgemeine Beschreibung des Materialanteils gerade auch im Hinblick auf die Abrasivität der Oberfläche wesentlich verbessert. Weitere Informationen in unserem Technischen Handbuch.

Oberflächengüte Gleitflächen

Kennwert	Grenzlage		
R _a	>0,05 μm <0,30 μm		
R _{max}	<2,5 μm		
R_{pkx}	<0,5 μm		
R_{pk}	<0,5 μm		
R_k	>0,25 μm <0,7 μm		
R_{vk}	>0,2 μm <0,65 μm		
R_{vkx}	>0,2 μm <2,0 μm		

Die in der Tabelle gelisteten Grenzwerte gelten derzeit nicht für keramische oder teilkeramische Gegenlaufflächen. Weitere Informationen in unserem Technischen Handbuch.

EINBAURAUM

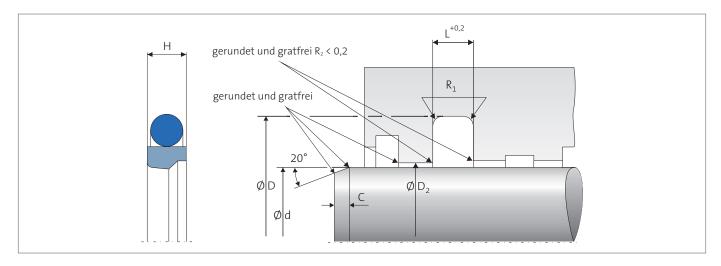
Spaltmaß

Das Maß D2 wird unter Berücksichtigung des maximal zul. Extrusionsspaltes, der Toleranzen, des Führungsspiels und der Einfederung der Führung unter Last bestimmt. Der maximal zul. Extrusionsspalt bei einseitiger Lage der Kolbenstange wird wesentlich durch den maximalen Betriebsdruck und die temperaturabhängige Formstabilität des Dichtungswerkstoffes bestimmt. Weitere Informationen in unserem Technischen Handbuch.

Profilmaß [mm]		Max. zulässiges Spaltmaß [mm]			
L	Profil	16 MPa	26 MPa	32 MPa	40 MPa
3,2	3,65	0,4	0,35	-	-
4,2	5,35	0,5	0,4	0,3	-
6,3	7,55	0,55	0,45	0,35	0,3
8,1	10,25	0,6	0,5	0,4	0,4
8,1	12	0,7	0,6	0,55	0,5
9,5	13,65	0,75	0,65	0,6	0,55

Bei einer Betriebstemperatur oberhalb von 90 °C und gleichzeitig anstehendem Betriebsdruck oberhalb von 26 MPa empfehlen wir den Einsatz der Werkstoff-Compounds PTFE B602 und PTFE C104.

Toleranzen


Durchmesser D [mm]	Toleranzlage
<500	Н8
≥500	H7

Die Toleranz zum Durchmesser d und D2 wird im Zusammenhang mit der Spaltmaßberechnung festgelegt. In typischen Hydraulikanwendungen bis zu einem Nennmaß von 1.000 mm werden üblicherweise die Toleranzfelder f7 und f8 bzw. H7 und H8 gewählt.

Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage. Weitere Informationen in unserem Technischen Handbuch.

Einbauskizze

Die hierin enthaltenen Informationen werden als zuverlässig erachtet, es werden jedoch keinerlei Zusicherungen, Garantien oder Gewährleistungen jeglicher Art in Bezug auf ihre Richtigkeit oder Eignung für irgendeinen Zweck gegeben. Die hierin wiedergegebenen Informationen basieren auf Labortests und sind nicht unbedingt indikativ für die Leistung des Endprodukts. Vollständige Tests und die Leistung des Endprodukts liegen in der Verantwortung des Anwenders.

www.fst.com

