
MERKEL OMEGAT OMK-S

Merkel Omegat OMK-S ist ein zweiteiliger Dichtsatz zur Abdichtung von Kolben, bestehend aus einem Profilring aus PTFE und einem Profilring aus Gummi als Vorspann-element.

Anwendung

Speziell für anspruchsvolle Anwendungen der Schwerindustrie ausgelegt, wie z.B. Walzeneinstellzylinder in Stahlwerken Für sehr große Durchmesser und beidseitig beaufschlagte Kolben geeignet Überbrückung großer Spalte im Dichtsystem

Werkstoff

Profilring aus PTFE

Werkstoff	Bezeichnung	Farbe	
PTFE-glass-fiber-MoS2 compound	PTFE GM201	hellgrau	
PTFE-bronze compound	PTFE B602	braun	

Profilring aus Gummi

Werkstoff	Bezeichnung
Nitrilkautschuk	NBR

Andere Werkstoffkombinationen auf Anfrage.

NUTZEN FÜR DEN KUNDEN

- Sehr hohe Druckstandsfestigkeit
- Hohe Verdrehsicherheit
- Sehr gute Extrusionssicherheit
- Hohe Abriebfestigkeit
- Gute Wärmeleitfähigkeit
- Geringe Reibung, stick-slip-frei
- Hohe Anpresskraft durch Profilring aus Gummi

EIGENSCHAFTEN UND VORTEILE

Einsatzbereich

Werkstoff	PTFE GM201/80 NBR B246	PTFE B602/70 NBR B246
Hydrauliköle HL, HLP	−30 +100 °C	−30 +100 °C
HFA-Flüssigkeiten	+5 +60 °C	-
HFB-Flüssigkeiten	+5 +60 °C	-
HFC-Flüssigkeiten	−30 +60 °C	-
HFD-Flüssigkeiten	_	-
Wasser	+5 +100 °C	-
HETG (Rapsöl)	−30 +80 °C	−30 +80 °C
HEES (synth. Ester)	−30 +80 °C	−30 +80 °C
HEPG (Glykol)	−30 +60 °C	−30 +60 °C
Mineralfette	−30 +100 °C	−30 +100 °C
Druck	40 MPa	40 MPa
Gleitgeschwindigkeit	5 m/s	5 m/s

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

Oberflächengüte

Rautiefen	$R_{\rm a}$	R_{max}	
Gleitfläche	0,05 0,3 μm	≤2,5 μm	
Nutgrund	≤1,6 µm	≤6,3 μm	
Nutflanken	≤3,0 μm	≤15,0 μm	

Werkstoffanteil $M_r > 50\%$ bis max. 90% bei Schnitttiefe c = $R_z/2$ und Bezugslinie $C_{ref} = 0\%$

Das Langzeitverhalten eines Dichtelementes sowie die Sicherheit gegen Frühausfälle werden wesentlich durch die Qualität der Gegenlauffläche beeinflusst. Eine exakte Beschreibung und Bewertung der Oberfläche ist somit unumgänglich.

Basierend auf aktuellen Erkenntnissen empfehlen wir, die obige Definition zur Oberflächengüte der Gleitfläche durch die in der folgenden Tabelle dargestellten Kenngrößen zu ergänzen. Mit diesen neuen Kenngrößen aus dem Materialanteil wird die bisher nur allgemeine Beschreibung des Materialanteils gerade auch im Hinblick auf die Abrasivität der Oberfläche wesentlich verbessert. Weitere Informationen in unserem technischen Handbuch.

Oberflächengüte Gleitflächen

Kennwert	Grenzlage			
R _a	>0,05 μm	<0,30 μm		
R _{max}	<2,	<2,5 μm		
R_{pkx}	<0,!	<0,5 μm		
R_{pk}	<0,	<0,5 μm		
R_k	>0,25 μm	<0,7 μm		
R_{vk}	>0,2 μm	<0,65 μm		
R _{vkx}	>0,2 μm	<2,0 μm		

Die in der Tabelle gelisteten Grenzwerte gelten derzeit nicht für keramische oder teilkeramische Gegenlaufflächen. Weitere Informationen in unserem technischen Handbuch.

Spaltmaß

Entscheidend für die Funktion der Dichtung ist das größte im Betrieb auftretende Spaltmaß auf der druckabgewandten Seite der Dichtung.

Der maximal zul. Extrusionsspalt bei einseitiger Lage der Kolbenstange wird wesentlich durch den maximalen Betriebsdruck und die temperaturabhängige Formstabilität des Dichtungswerkstoffes bestimmt. Weitere Informationen in unserem technischen Handbuch.

Profilmaß	[mm]	Max	c. zulässiges	Spaltmaß [r	nm]
L	Profil	16 MPa	26 MPa	32 MPa	40 MPa
10	10	0,6	0,5	0,4	0,4
12,5	12,5	0,75	0,65	0,55	0,5
15	15	0,75	0,65	0,55	0,5
17,5	17,5	0,75	0,65	0,55	0,5
20	20	0,8	0,7	0,6	0,55

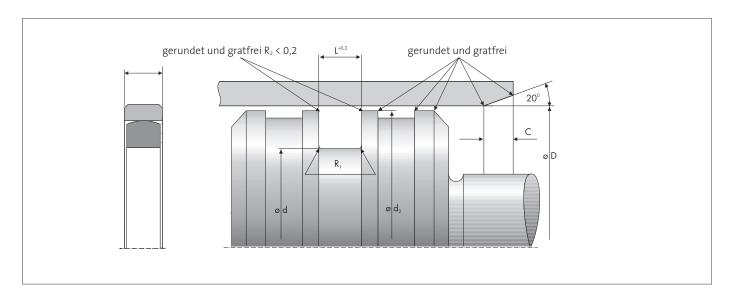
EIGENSCHAFTEN UND VORTEILE

Toleranzen

Durchmesser D [mm]	Toleranz
<500	h8
≥500	h7

Das Maß d_2 wird unter Berücksichtigung des maximal zul. Extrusionsspaltes, der Toleranzen, des Führungsspiels, der Einfederung der Führung unter Last und der Rohrdehnung bestimmt.

Die Toleranz zum Durchmesser D und d₂ wird im Zusammenhang mit der Spaltmaßberechnung festgelegt. In typischen Hydraulikanwendungen bis zu einem Nennmaß von 1.000 mm werden üblicherweise die Toleranzfelder H7 und H8 bzw. h7 und h8 gewählt. Weitere Informationen in unserem technischen Handbuch.


Konstruktionshinweise

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise in unserem technischen Handbuch.

Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage. Weitere Informationen in unserem technischen Handbuch.

Einbauskizze

www.fst.com

