
MERKEL OMEGAT OMK-MR

Merkel Omegat OMK-MR ist ein zweiteiliger Dichtsatz zur Abdichtung von Kolben bestehend aus einem Profilring aus PTFE und einem O-Ring als Vorspannelement.

Anwendung

Merkel Omegat OMK-MR wird bei beidseitig beaufschlagten Kolben eingesetzt. Verwendung vorzugsweise in Flurförderfahrzeugen, Handhabungsgeräten, Landmaschinen, Lkw-Ladekränen, Pressen, Spritzgießmaschinen, Steuer- und Regeleräten und in der Schiffshydraulik und Walzwerken.

Werkstoff

PTFE-Profilring

Werkstoff	Bezeichnung	Farbe
PTFE-Glasfaser-MoS2- Compound	PTFE GM201	hellgrau
PTFE-Bronze-Compound	PTFE B602	braun

O-Ring

Werkstoff	Bezeichnung
Nitrilkautschuk	NBR
Fluor-Kautschuk	FKM

Andere Werkstoffkombinationen sind auf Wunsch lieferbar.

NUTZEN FÜR DEN KUNDEN

- Hohe Funktionssicherheit auch bei anspruchsvollen Betriebsparametern
- Durch die Verwendung von Druckausgleichsnuten für schnelle Druckwechsel geeignet
- Sehr hohe Druckstandsfestigkeit und Härte
- Gute Wärmeleitfähigkeit
- Hohe Abriebfestigkeit
- Geringe Reibung, stick-slip-frei

EIGENSCHAFTEN UND VORTEILE

Einsatzbereich

Werkstoff	PTFE B602/NBR	PTFE B602/FKM	PTFE GM201/NBR
Hydrauliköle HL, HLP	−30 +100 °C	−10 +200 °C	−30 +100 °C
HFA-Flüssigkeiten	-	-	+5 +60 °C
HFB-Flüssigkeiten	-	-	+5 +60 °C
HFC-Flüssigkeiten	-		−30 +60 °C
HFD-Flüssigkeiten	-	−10 +200 °C	-
Wasser	-	-	+5 +100 °C
HETG (Rapsöl)	−30 +80 °C	−10 +80 °C	−30 +80 °C
HEES (synth. Ester)	−30 +80 °C	−10 +100 °C	−30 +80 °C
HEPG (Glycol)	−30 +60 °C	−10 +80 °C	−30 +60 °C
Mineralfette	−30 +100 °C	−10 +200 °C	−30 +100 °C
Druck	40 MPa	40 MPa	40 MPa
Gleitgeschwindigkeit	5 m/s	5 m/s	5 m/s

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

Oberflächengüte

Rautiefen	R _a	R_{max}
Gleitfläche	0,05 0,3 μm	≤2,5 μm
Nutgrund	≤1,6 µm	≤6,3 μm
Nutflanken	≤3,0 μm	≤15,0 μm

Traganteil M, >50 % bis max. 90 % bei Schnitttiefe c = Rz/2 und Bezugslinie $C_{\rm ref}$ = 0 %

Das Langzeitverhalten eines Dichtelementes sowie die Sicherheit gegen Frühausfälle werden wesentlich durch die Qualität der Gegenlauffläche beeinflusst. Eine exakte Beschreibung und Bewertung der Oberfläche ist somit unumgänglich.

Basierend auf aktuellen Erkenntnissen empfehlen wir, die obige Definition zur Oberflächengüte der Gleitfläche durch die in der folgenden Tabelle dargestellten Kenngrößen zu ergänzen. Mit diesen neuen Kenngrößen aus dem Materialanteil wird die bisher nur allgemeine Beschreibung des Materialanteils gerade auch im Hinblick auf die Abrasivität der Oberfläche wesentlich verbessert. Weitere Informationen in unserem Technischen Handbuch.

Oberflächengüte Gleitflächen

Kennwert	Gren	Grenzlage		
R _a	>0,05 μm	<0,30 μm		
R _{max}	<2,!	<2,5 μm		
$R_{\rm pkx}$	<0,!	<0,5 μm		
R_{pk}	<0,!	<0,5 μm		
R_k	>0,25 μm	<0,7 μm		
R_{vk}	>0,2 μm	<0,65 μm		
R_{vkx}	>0,2 μm	<2,0 μm		

Die in der Tabelle gelisteten Grenzwert gelten derzeit nicht für keramische oder teilkeramische Gegenlaufflächen.

Weitere Informationen in unserem Technischen Handbuch.

Spaltmaß

Das Maß d₂ wird unter Berücksichtigung des maximal zul. Extrusionsspaltes, der Toleranzen, des Führungsspiels, der Einfederung der Führung unter Last und der Rohrdehnung bestimmt.

Der maximal zulässige Extrusionsspalt bei einseitiger Lage der Kolbenstange wird wesentlich durch den maximalen Betriebsdruck und die temperaturabhängige Formstabilität des Dichtungswerkstoffes bestimmt. Weitere Informationen in unserem Technischen Handbuch.

EIGENSCHAFTEN UND VORTEILE

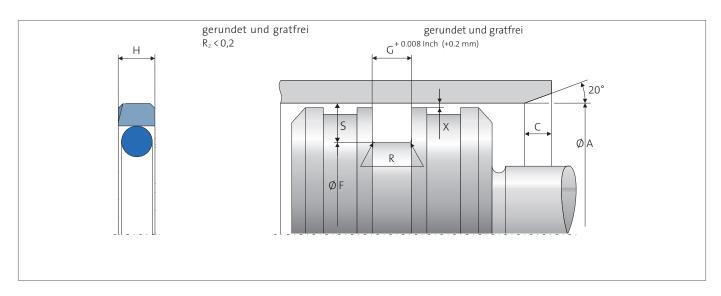
Profilmaß	[mm]	Ma	x. zulässige	s Spaltmaß	[mm]
L	Profil	16 MPa	26 MPa	32 MPa	40 MPa
2,2	2,45	0,35	0,3	_	_
3,2	3,75	0,4	0,35	-	-
4,2	5,5	0,5	0,4	0,3	-
6,3	7,75	0,55	0,45	0,4	0,35
8,1	10,5	0,6	0,5	0,45	0,45
8,1	12,25	0,7	0,6	0,55	0,5
9,5	14	0,75	0,65	0,6	0,55

Bei einer Betriebstemperatur oberhalb von 90 $^{\circ}$ C und gleichzeitig anstehendem Betriebsdruck oberhalb von 26 MPa empfehlen wir den Einsatz der Werkstoff-Compounds PTFE B602.

Toleranzen

Durchmesser D [mm]	Toleranzlage
<500	h8
≥500	h7

Die Toleranz zum Durchmesser D und d₂ wird im Zusammenhang mit der Spaltmaßberechnung festgelegt. In typischen Hydraulikanwendungen bis zu einem Nennmaß von 1.000 mm werden üblicherweise die Toleranzfelder H7 und H8 bzw. h7 und h8 gewählt.


Konstruktionshinweise

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise in unserem Technischen Handbuch.

Einbau und Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage. Weitere Informationen in unserem Technischen Handbuch.

Einbauskizze

Die hierin enthaltenen Informationen werden als zuverlässig erachtet, es werden jedoch keinerlei Zusicherungen, Garantien oder Gewährleistungen jeglicher Art in Bezug auf ihre Richtigkeit oder Eignung für irgendeinen Zweck gegeben. Die hierin wiedergegebenen Informationen basieren auf Labortests und sind nicht unbedingt indikativ für die Leistung des Endprodukts. Vollständige Tests und die Leistung des Endprodukts liegen in der Verantwortung des Anwenders.

www.fst.com

