
MERKEL NUTRING DICHTSATZ 0216

Merkel Nutring Dichtsatz 0216 ist ein zweiteiliger Dichtsatz aus einem Elastomer-Nutring mit einer elastomeren Dichtkante, Gewebearmierung an der Lauffläche und einem aktiven Backring.

Anwendungen

Einfachwirkende Stangendichtung für den Einsatz in der Hydraulik und Pneumatik

Werkstoff

Profilring

Werkstoff	Bezeichnung	Farbe
Nitrilkautschuk	NBR	schwarz
Baumwollgewebe	BI-NBR	schwarz

Backring

Werkstoff	Bezeichnung	Farbe
D < 300 mm Polyacetal	POM	weiß
D > 300 mm Polyamid	PA	weiß

NUTZEN FÜR DEN KUNDEN

- Geringe Reibung durch Gewebearmierung
- Großer Abmessungsbereich
- Extrusionssicherheit durch aktivierten Backring
- Geringes Rückfördervermögen (nicht für Dichtsysteme geeignet)
- Leicht montierbar in nicht axiale Einbauräume
- ab 100 mm Durchmesser

EIGENSCHAFTEN UND VORTEILE

Einsatzbereich

Werkstoff	NBR/BI-NBR/POM oder PA
Hydrauliköle HL, HLP	−30 +100 °C
HFA-Flüssigkeiten	+5 +60 °C
HFB-Flüssigkeiten	+5 +60 °C
HFC-Flüssigkeiten	−30 +60 °C
HFD-Flüssigkeiten	-
Wasser	+5 +100°C
HETG (Rapsöl)	−30 +80 °C
HEES (synth. Ester)	−30 +80 °C
HEPG (Glykol)	−30 +60 °C
Mineralfette	−30 +100 °C
Druck (Hydraulik)	25 oder 40* MPa
Druck (Pneumatik)	5 MPa
Gleitgeschwindigkeit	1,5 m/s

^{*}max. Druck abhängig vom Profil

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

Bei Nutringen 0216 sollte, wenn lange Hübe gefahren werden, der max. Druck nur auf dem letzten Teil ausgenutzt werden (Schließdruck); während des Hubes max. 16 MPa.

Oberflächengüte

Rautiefen	R_{a}	R _{max}
Gleitfläche	0,05 0,3 μm	≤2,5 μm
Nutgrund	≤1,6 µm	≤6,3 μm
Nutflanken	≤3,0 µm	≤15,0 μm

Materialanteil M_r >50% bis max. 90% bei Schnitttiefe c = $R_z/2$ und Bezugslinie C_{ref} = 0%

Konstruktionshinweise

Bitte beachten Sie die allgemeinen Konstruktionshinweise in unserem Technischen Handbuch.

Spaltmaß

Das Maß D2 wird unter Berücksichtigung des maximal zul. Extrusionsspaltes, der Toleranzen, des Führungsspiels, der Einfederung der Führung unter Last und der Rohrdehnung bestimmt. Weitere Informationen in unserem Technischen Handbuch. Der maximal zul. Extrusionsspalt bei einseitiger Lage der Kolbenstange wird wesentlich durch den maximalen Betriebsdruck und die temperaturabhängige Formstabilität des Dichtungswerkstoffes bestimmt.

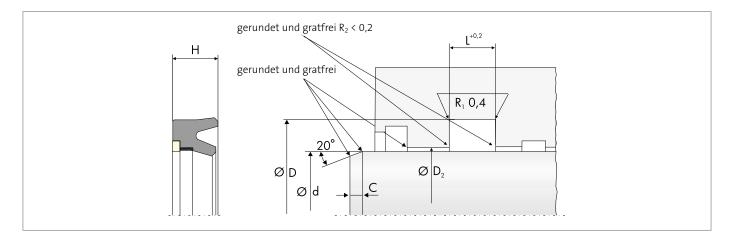
Profilmaß [mm]	max. zul. Spaltmaß [mm]			
Profil	16 MPa	26 MPa	32 MPa	40 MPa
<15	1,2	1,0	0,65	0,5
>15	1,8	1,4	0,9	0,7

Toleranz

Durchmesser	Toleranz
D	H10

Die Toleranz zum Durchmesser d und D2 wird im Zusammenhang mit der Spaltmaßberechnung festgelegt. In typischen Hydraulikanwendungen bis zu einem Nennmaß von 1.000 mm werden üblicherweise die Toleranzfelder f7 und f8 bzw. H7 und H8 gewählt.

Einbau & Montage


Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage. Weitere Informationen in unserem Technischen Handbuch.

EIGENSCHAFTEN UND VORTEILE

Einbauskizze

www.fst.com

