
MERKEL® KOMPAKTDICHTUNG S8

Merkel® Kompaktdichtung S8 ist eine einteilige Stangendichtung mit einem im Gewebeteil eingefaßten Elastomerkopf.

NUTZEN FÜR DEN KUNDEN

- Leicht montierbar
- Auch im Niederdruckbereich ausgezeichnete Dichtwirkung
- Durch das Gewebeteil niedrige Reibung

Anwendungen

Stangendichtung für den Einsatz bei leichter und mittlerer Beanspruchung.

Einsatzbereich

Werkstoff	85 NBR B247
Hydrauliköle HL, HLP	−30 +100 °C
HFA-Flüssigkeiten	+5 +60 °C
HFB-Flüssigkeiten	+5 +60 °C
HFC-Flüssigkeiten	−30 +60 °C
HFD-Flüssigkeiten	-
Wasser	+5 +100 °C
HETG (Rapsöl)	−30 +8 0 °C
HEES (synth. Ester)	−30 +80 °C
HEPG (Glykol)	−30 +60 °C
Mineralfette	−30 +100 °C
Druck	25 MPa
Gleitgeschwindigkeit	0,5 m/s

Die angegebenen Werte sind Maximalwerte und dürfen nicht gleichzeitig angewandt werden.

EIGENSCHAFTEN UND KENNGRÖSSEN

Werkstoff

Werkstoff	Bezeichnung	Farbe
Nitrilkautschuk	NBR	schwarz

Oberflächengüte

Kenngröße	Grenzlage [μm]		
Kellilgioise	Gleitfläche	Nutgrund	Nutflanken
R_a	0,05 0,3 μm	≤1,6 μm	≤3,0 μm
Rz1 _{max}	≤3,0 μm	≤6,3 μm	≤15,0 μm

Materialanteil M_r >50 % bis max. 90 % bei Schnitttiefe c = $R_z/2$ und Bezugslinie C_{ref} = 0 %

Das Langzeitverhalten eines Dichtelements sowie die Sicherheit gegen Frühausfälle werden wesentlich durch die Qualität der Gegenlauffläche beeinflusst. Eine exakte Beschreibung und Bewertung der Oberfläche ist somit unumgänglich.

Basierend auf aktuellen Erkenntnissen empfehlen wir, die obige Definition zur Oberflächengüte der Gleitfläche durch die in der folgenden Tabelle dargestellten Kenngrößen zu ergänzen. Mit diesen neuen Kenngrößen aus dem Materialanteil wird die bisher nur allgemeine Beschreibung des Materialanteils gerade auch im Hinblick auf die Abrasivität der Oberfläche wesentlich verbessert. Weitere Informationen in unserem Technischen Handbuch.

Oberflächengüte Gleitflächen

	Grenzlage [μm]			
Kenngröße	HP-HVOF*	Plasma**	Hartchrom	Thermo- chem.***
R _a	0,05 0,15	0,15 0,3	0,1 0,25	0,05 0,3
R_{pk}	≤0,1	≤0,1	≤0,3	≤0,5
R_{vk}	0,1 0,6	0,2 1,5	0,2 0,5	0,2 0,65
Rz1 _{max}	./.	./.	./.	≤2,5
R_k	./.	./.	./.	0,25 0,7
R _{pkx}	./.	./.	./.	≤0,5
R_{vkx}	./.	./.	./.	0,2 2,0

* Hochdruck-Hochgeschwindigkeits-Flammgespritzte Oberflächen

Karbide: WC/Ni, Cr₂C₃/NiCr Ø-Porosität: ≤0,5 %

typische Schichtstärke: 125 μm

* Keramische Oberflächen

Keramik: Al2O₃, TiO₃, Cr₂O₃ Ø-Porosität: ≤3 %

typische Schichtstärke: 150 μm

*** Gehärtete Oberflächen

Nitrocarburiert; induktionsgehärtet

Spaltmaß

Entscheidend für die Funktion der Dichtung ist das größte im Betrieb auftretende Spaltmaß auf der druckabgewandten Seite der Dichtung. Bei größeren Spaltmaßen als in der Tabelle angegeben, sollte ein ganzflächig hinter der Dichtung liegender Backring aus Kunststoff verwendet werden.

Profilmaß [mm]	max. zul. Spaltmaß [mm]	
Profil	16 MPa	25 MPa
≤6	0,2	0,1
>6 10	0,2	0,1
>10 15	0,2	0,1

Toleranzempfehlung und Maß D2

Bei der Auslegung von D₂ sind zulässiges Spaltmaß, Toleranzen, Führungsspiel und Einfederung der Führung unter Last zu beachten.

Nenn-Ø d [mm]	d	D
≤80	f8	H11
>80 120	f8	H11
>120 340	f7	H11

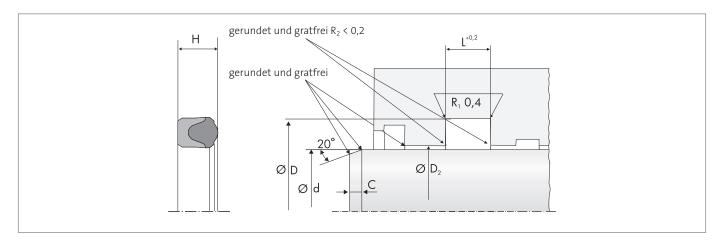
Passungsbeispiel für metallische Führungen

Nenn-Ø d [mm]	d	D
≤80	H9/f8	H11
>80 120	H8/f8	H11
>120 340	H8/f7	H11

Konstruktionshinweise

Bitte beachten Sie die allgemeinen Konstruktionshinweise in unserem Technischen Handbuch.

Montage


Bitte beachten Sie die allgemeinen Hinweise zum Einbau von Hydraulikdichtungen in unserem Technischen Handbuch.

EINBAURAUM

Einbauskizze

Die hierin enthaltenen Informationen werden als zuverlässig erachtet, es werden jedoch keinerlei Zusicherungen, Garantien oder Gewährleistungen jeglicher Art in Bezug auf ihre Richtigkeit oder Eignung für irgendeinen Zweck gegeben. Die hierin wiedergegebenen Informationen basieren auf Labortests und sind nicht unbedingt indikativ für die Leistung des Endprodukts. Vollständige Tests und die Leistung des Endprodukts liegen in der Verantwortung des Anwenders.

www.fst.com

