
# MERKEL DOUBLE WIPER PT1



**Merkel Double Wiper PT1**, consisting of a PTFE profile ring with one sealing and one wiping edge, plus two O-rings as pre-stressing elements.



#### **Applications**

Double wiper with integrated sealing function for improving overall sealing capabilities. The PT 1 is preferably used in conjunction with our rod seals Merkel Omegat OMS-MR PR or U-Ring T20.

#### Material

**PTFE Profile Ring** 

| Material                            | Designation | Color      |
|-------------------------------------|-------------|------------|
| PTFE-glass-fibre -<br>MOS2 compound | PTFE GM201  | light gray |
| PTFE-bronze compound                | PTFE B602   | brown      |

#### O-Ring

| Material         | Designation |  |
|------------------|-------------|--|
| Nitrile rubber   | NBR         |  |
| Fluoro elastomer | FKM         |  |

Other material combinations are available on request.

## **VALUE TO THE CUSTOMER**

- Enhanced functional reliability of the sealing system, due to additional sealing edge
- High operating reliability, due to sturdy profile ring made of PTFE compound (can briefly withstand the full operating pressure)
- Very good wiping capability for dirt adhering, due to dimensionally stable wiping edge
- Excellent control and positioning characteristics due to favorable frictional behavior (stick-slip-free)





## TECHNICAL PROPERTIES

#### **Operating Conditions**

| Material                | PTFE GM201/NBR | PTFE B602/NBR | PTFE B602/FKM |
|-------------------------|----------------|---------------|---------------|
| Hydraulic oils, HL, HLP | −30 +100 °C    | −30 +100 °C   | −10 +200 °C   |
| HFA fluids              | + 5 +60 °C     | -             | -             |
| HFB fluids              | + 5 +60 °C     | -             | _             |
| HFC fluids              | −30 +60 °C     | -             | -             |
| HFD fluids              | _              | -             | −10 +200 °C   |
| Water                   | + 5 +100 °C    | -             | -             |
| HETG (rape-seed oil)    | −30 +80 °C     | −30 +80 °C    | −10 +80 °C    |
| HEES (synth. ester)     | −30 +80 °C     | −30 +80 °C    | −10 +100 °C   |
| HEPG (glycol)           | −30 +60 °C     | −30 +60 °C    | −10 +80 °C    |
| Mineral greases         | −30 +100 °C    | −30 +100 °C   | −10 +200 °C   |
| Sliding speed           | 5 m/s          | 5 m/s         | 5 m/s         |

The figures given are maximum values and must not be applied simultaneously.

#### Surface finish of the sliding surfaces

| Characteristic<br>Value | Limit    |          |
|-------------------------|----------|----------|
| R <sub>a</sub>          | >0,05 μm | <0,30 μm |
| R <sub>max</sub>        | <2,5     | μm       |
| $R_{\rm pkx}$           | <0,5     | μm       |
| $R_{pk}$                | <0,5 μm  |          |
| $R_k$                   | >0,25 μm | <0,7 μm  |
| $R_{vk}$                | >0,2 μm  | <0,65 μm |
| $R_{vkx}$               | >0,2 μm  | <2,0 μm  |

The limit values listed in the table do not currently apply for ceramic or semi-ceramic counter surfaces. Please also consult our Technical Manual.

#### Surface Finish

| Peak-to-valley heights | R <sub>a</sub> | $R_{\sf max}$ |
|------------------------|----------------|---------------|
| Sliding surface        | 0,05 0,3 μm    | ≤2,5 μm       |
| Groove base            | ≤1,6 μm        | ≤6,3 μm       |
| Groove sides           | ≤3,0 μm        | ≤15,0 μm      |

Material content  $M_{r} > 50\,\%$  to max. 90 %, with cut depth c =  $R_{z}/2$  and reference line  $C_{ref}$  = 0 %

The long-time behavior of a sealing element and its dependability against early failures are crucially influenced by the quality of the counter surface. A precise description and assessment of the surface is thus indispensable.

Based on recent findings, we recommend supplementing the above definition of surface finish for the sliding surface by the characteristics detailed in the table below. With these new characteristics derived from the material content, the hitherto merely general description of the material content is significantly improved, not least in regard to the abrasiveness of the surface. Please also consult our Technical Manual.

## Tolerances

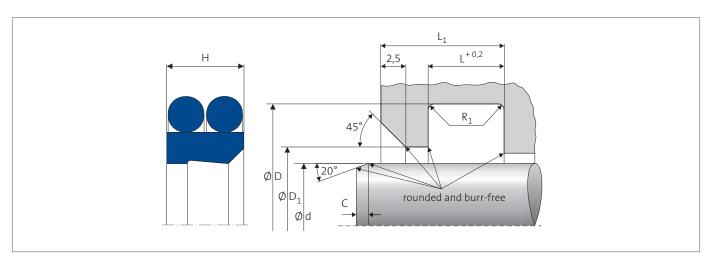
| Diameter D | Tolerance |
|------------|-----------|
| D          | Н9        |
| $D_1$      | H10       |

The tolerance for the diameter d is specified in connection with the gap dimension calculation for the primary seal. In typical hydraulic applications up to a nominal dimension of 1.000 mm, the tolerance fields f7 and f8 are usually chosen.

#### **Design Notes**

We recommend a pressure-relief bore. In the case of upstream seals with a good return capability, a pressure-relief feature is not necessary. Please also consult our Technical Manual.

#### **Installation & Assembly**


Reliable seal function is dependent on correct installation. Please also consult our Technical Manual.





# **GLAND DESIGN**

### **Installation Diagram**



The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. The information presented herein is based on laboratory testing and does not necessarily indicate end product performance. Full scale testing and end product performance are the responsibility of the user.

www.fst.com



